您的位置:網站首頁 > 電器維修資料網 > 正文 >
開關電源的技術與發展
來源: 日期:2013-11-29 9:18:10 人氣:標簽:
另外,由于調整管上消耗較大的功率,所以需要采用大功率調整管并裝有體積很大的散熱器,很難滿足現代電子設備發展的要求。20世紀50年代,美國宇航局以小型化、重量輕為目標,為搭載火箭開發了開關電源。在近半個多世紀的發展過程中,開關電源因具有體積小、重量輕、效率高、發熱量低、性能穩定等優點而逐漸取代傳統技術制造的連續工作電源,并廣泛應用于電子整機與設備中。20世紀80年代,計算機全面實現了開關電源化,率先完成計算機的電源換代。20世紀90年代,開關電源在電子、電器設備、家電領域得到了廣泛的應用,開關電源技術進入快速發展期。
開關型穩壓電源采用功率半導體器件作為開關,通過控制開關的占空比調整輸出電壓。以功率晶體管(GTR)為例,當開關管飽和導通時,集電極和發射極兩端的壓降接近零;當開關管截止時,其集電極電流為零。所以其功耗小,效率可高達70%-95%。而功耗小,散熱器也隨之減小。開關型穩壓電源直接對電網電壓進行整流、濾波、調整,然后由開關調整管進行穩壓,不需要電源變壓器。此外,開關工作頻率為幾十千赫,濾波電容器、電感器數值較小。因此開關電源具有重量輕、體積小等優點。
另外,由于功耗小,機內溫升低,提高了整機的穩定性和可靠性。而且其對電網的適應能力也有較大的提高,一般串聯穩壓電源允許電網波動范圍為220±10%,而開關型穩壓電源在電網電壓在110-260伏范圍內變化時,都可獲得穩定的輸出電壓。
開關電源的高頻化是電源技術發展的創新技術,高頻化帶來的效益是使開關電源裝置空前地小型化,并使開關電源進入更廣泛的領域,特別是在高新技術領域的應用,推動了高新技術產品的小型化、輕便化。另外開關電源的發展與應用在節約資源及保護環境方面都具有深遠的意義。
目前市場上開關電源中功率管多采用雙極型晶體管,開關頻率可達幾十千赫;采用MOSFET的開關電源轉換頻率可達幾百千赫。為提高開關頻率,必須采用高速開關器件。對于兆赫以上開關頻率的電源可利用諧振電路,這種工作方式稱為諧振開關方式。
它可以極大地提高開關速度,理論上開關損耗為零,噪聲也很小,這是提高開關電源工作頻率的一種方式。采用諧振開關方式的兆赫級變換器已經實用化。開關電源的技術追求和發展趨勢可以概括為以下四個方面。
一、小型化、薄型化、輕量化、高頻化———開關電源的體積、重量主要是由儲能元件(磁性元件和電容)決定的,因此開關電源的小型化實質上就是盡可能減小其中儲能元件的體積;在一定范圍內,開關頻率的提高,不僅能有效地減小電容、電感及變壓器的尺寸,而且還能夠抑制干擾,改善系統的動態性能。因此,高頻化是開關電源的主要發展方向。
二、高可靠性———開關電源使用的元器件比連續工作電源少數十倍,因此提高了可靠性。從壽命角度出發,電解電容、光耦合器及排風扇等器件的壽命決定著電源的壽命。所以,要從設計方面著眼,盡可能使用較少的器件,提高集成度。這樣不但解決了電路復雜、可靠性差的問題,也增加了保護等功能,簡化了電路,提高了平均無故障時間。
三、低噪聲———開關電源的缺點之一是噪聲大。單純地追求高頻化,噪聲也會隨之增大。采用部分諧振轉換回路技術,在原理上既可以提高頻率又可以降低噪聲。所以,盡可能地降低噪聲影響是開關電源的又一發展方向。
四、采用計算機輔助設計和控制———采用CAA和CDD技術設計 新變換拓撲和 佳參數,使開關電源具有 簡結構和 佳工況。在電路中引入微機檢測和控制,可構成多功能監控系統,可以實時檢測、記錄并自動報警等。
開關電源的發展從來都是與半導體器件及磁性元件等的發展休戚相關的。高頻化的實現,需要相應的高速半導體器件和性能優良的高頻電磁元件。發展功率MOSFET、IGBT等新型高速器件,開發高頻用的低損磁性材料,改進磁元件的結構及設計方法,提高濾波電容的介電常數及降低其等效串聯電阻等,對于開關電源小型化始終產生著巨大的推動作用。
總之,人們在開關電源技術領域里,邊研究低損耗回路技術,邊開發新型元器件,兩者相互促進并推動著開關電源以每年超過兩位數的市場增長率向小型、薄型、高頻、低噪聲以及高可靠性方向發展。
【看看這篇文章在百度的收錄情況】
相關文章
- 上一篇: DSP的絕對式光電編碼器串行接口設計
- 下一篇: 電視伴音的傳送方式